• Ultrafast excited state decay of natural UV filters: from intermolecular hydrogen bonds to a conical intersection
    P.S. Sherin, Y.P. Tsentalovich, E. Vauthey and E. Benassi
    Physical Chemistry Chemical Physics, 20 (22) (2018), p15074-15085
    DOI:10.1039/C8CP02183J | Abstract | Article HTML | Article PDF
Kynurenines (KNs) are natural UV filters of the human eye lens, protecting the eye tissues from solar UV radiation. Key points of their effective protection are the intramolecular charge transfer (ICT) in the excited state and the fast dissipation of absorbed light energy into heat via the intermolecular H-bonds. Herein we report that the introduction of an unsaturated double bond in the amino acid side chain, operating as an ICT-enhancing electron donor group, drastically accelerates the internal conversion (IC) due to a conical intersection (CI) between the potential energy surfaces of the excited and ground states. Our photophysical study of a deaminated KN (carboxyketoalkene, CKA), an intrinsic product of KN thermal decomposition, demonstrates an unusually fast excited state decay in a broad range of solvents of different polarity and proticity. The detailed analysis of interactions in the excited state by different computational techniques revealed that the changes in molecular structure – the twist of the carbonyl group from the plane of the aromatic ring followed by the formation of two mutually orthogonal conjugated substructures – are responsible for the CI of the excited and ground state potential energy surfaces. Intermolecular H-bonds facilitate the transition to the CI, but do not play a crucial role in the fast decay of the excited state. An extremely fast and efficient IC in CKA opens the way for the design of new types of organic UV filters and their applications in material science, cosmetics and medicine.
Late endosomes are a major trafficking hub in the cell at the crossroads between endocytosis, autophagy, and degradation in lysosomes. Herein is disclosed the first small molecule allowing their selective imaging and monitoring in the form of a diazaoxatriangulene fluorophore, 1a (hexadecyl side chain). The compound is prepared in three steps from a simple carbenium precursor. In nanospheres, this pH-sensitive (pKa = 7.3), photochemically stable dye fluoresces in the red part of visible light (601 and 578 nm, acid and basic forms, respectively) with a quantum yield between 14 and 16% and an excited-state lifetime of 7.7–7.8 ns. Importantly, the protonated form 1a·H+ provokes a specific staining of late endosome compartments (pH 5.0–5.5) after 5 h of incubation with HeLa cells. Not surprisingly, this late endosome marking depends on the intra-organelle pH, and changing the nature of the lipophilic chain provokes a loss of selectivity. Interestingly, fixation of the fluorophore is readily achieved with paraformaldehyde, giving the possibility to image both live and fixed cells.
Configurationally stable diaza[4]helicenes have been prepared in two steps by using a particularly facile N–N bond-cleavage reaction. The synthetic procedure uses hydrazine (NH2NH2) for the introduction of a single nitrogen atom. The strategy is general, modular and highly tolerant to functional groups. A mechanistic rationale is proposed for the spontaneous N–N bond-cleavage reaction. The resulting helical quinacridines are dyes that present absorption and emission properties that can be modulated as a function of pH; the pink quinacridine and green protonated forms (pKa ≈ 9.0) display distinct optical features in the near-IR region. Single enantiomers were obtained by chiral stationary phase HPLC resolution. The absolute configurations were assigned by comparison of the ECD spectra of the conjugated acids with those of known dialkylquinacridinium derivatives. A rather high racemization barrier was measured by means of variable-temperature ECD experiments (ΔG‡ = 30.7 ± 4.0 kcal mol–1 at 140 °C).
  • Broadband ultraviolet-visible transient absorption spectroscopy in the nanosecond to microsecond time domain with sub-nanosecond time resolution
    B. Lang, S. Mosquera-Vazquez, D. Lovy, P. Sherin, V. Markovic and E. Vauthey
    Review of Scientific Instruments, 84 (7) (2013), p73107
    DOI:10.1063/1.4812705 | unige:28965 | Abstract | Article HTML | Article PDF
 
A combination of sub-nanosecond photoexcitation and femtosecond supercontinuum probing is used to extend femtosecond transient absorption spectroscopy into the nanosecond to microsecond time domain. Employing a passively Q-switched frequency tripled Nd:YAG laser and determining the jitter of the time delay between excitation and probe pulses with a high resolution time delay counter on a single-shot basis leads to a time resolution of 350 ps in picosecond excitation mode. The time overlap of almost an order of magnitude between fs and sub-ns excitation mode permits to extend ultrafast transient absorption (TA) experiments seamlessly into time ranges traditionally covered by laser flash photolysis. The broadband detection scheme eases the identification of intermediate reaction products which may remain undetected in single-wavelength detection flash photolysis arrangements. Single-shot referencing of the supercontinuum probe with two identical spectrometer/CCD arrangements yields an excellent signal-to-noise ratio for the so far investigated chromophores in short to moderate accumulation times.
The photophysics and photochemistry of kynurenic acid (KNA) and kynurenine yellow (KNY) in neutral aqueous solutions were investigated using time-resolved optical spectroscopy. Both molecules have similar quinoline-like structures, the only difference being the absence of conjugation in the nitrogen containing cycle in KNY. The main channel of S1 excited state decay in the case of partially-unconjugated KNY is the solvent assisted S1 → S0 radiationless transition via intermolecular hydrogen bonds (ΦIC = 0.96), whereas, in the case of fully-conjugated KNA, it is intersystem crossing to the triplet state (ΦT = 0.82). The major intermediate products of the singlet excited KNY deactivation are the triplet state (ΦT = 0.022) and, most probably, the enol form (Φenol = 0.012), which decay with the formation of 2,3-dihydro-4-hydroxyquinoline and 4-hydroxyquinoline, respectively. The results obtained show that KNA and KNY, which are products of the decomposition of the UV filter kynurenine, are significantly more photoactive and less photostable than the parent molecule.
  
The photophysical properties of a series of helicene cations in various solvents have been investigated using stationary and time-resolved spectroscopy. These compounds fluoresce in the near infrared region with a quantum yield ranging between 2 and 20% and a lifetime between 1 and 12 ns, depending of the solvent. No clear solvent dependence could be recognized except for a decrease of fluorescence quantum yield and lifetime with increasing hydrogen-bond donating ability of the solvent. In water, the helicene cations undergo aggregation. This effect manifests itself by the presence of a slow fluorescence decay component, whose amplitude increases with dye concentration, and by a much slower decay of the polarization anisotropy in water compared to an organic solvent of similar viscosity. However, aggregation has essentially no effect on the stationary fluorescence spectrum, whereas relatively small changes can be seen in the absorption spectrum. Analysis of the dependence of aggregation on the dye concentration reveals that the aggregates are mostly dimers and that the aggregation constant is substantially larger for hetero- than homochiral dimers.
 
PURPOSE. To compare the photochemical properties of UV filter molecules present in the human lens (kynurenine, KN; 3-hy- droxykynurenine, 3OHKN; 3-hydroxykynurenine O-gluco- side, 3OHKG; 4-(2-aminophenyl)-4-oxobutanoic acid, AHA; and glutathionyl-kynurenine, GSH-KN) with the use of the following parameters: excited singlet lifetime, fluorescence quantum yield, triplet quantum yield, photodecomposition quantum yield.

METHODS. The excited singlet lifetimes were measured with the use of fluorescence upconversion (time resolution, 210 fs) and pump-probe transient absorption (time resolution, 200 fs) methods. The fluorescence quantum yields were determined relative to an aqueous solution of quinine bisulfate. The triplet quantum yields were measured with the use of nanosecond laser flash photolysis. The photodecomposition quantum yields were determined by steady state photolysis followed by the high-performance liquid chromatography analysis.

RESULTS. The secondary UV filters—AHA and GSH-KN are better photosensitizers than the primary ones -KN, 3OHKN and 3OHKG: the singlet state lifetimes of the secondary UV filters are longer, and the quantum yields of fluorescence and triplet state formation are higher.

CONCLUSIONS. With aging, the ratio primary/secondary UV filters in the human lens decreases from approximately 10:1 to 2:1. The obtained results demonstrate that the quality of the secondary UV filters is inferior compared to the primary ones, which may result in a higher susceptibility of old lenses to UV light. That might be an important factor for the development of the age-related cataract.

  • Photoinduced electron transfer reactions: from the elucidation of old problems towards the exploration of interfaces
    M. Fedoseeva, J. Grilj, O. Kel, M. Koch, R. Letrun, V. Markovic, I. Petkova, S. Richert, A. Rosspeintner, P. Sherin, D. Villamaina, B. Lang and E. Vauthey
    Chimia, 65 (2011), p350-352
    DOI:10.2533/chimia.2011.350 | unige:16760 | Abstract | Article PDF
The activities of our research group in the field of photoinduced electron transfer reactions are discussed and illustrated by several examples
  
  • Photophysics and Photochemistry of the UV Filter Kynurenine Covalently Attached to Amino Acids and to a Model Protein
    P.S. Sherin, J. Grilj, L.V. Kopylova, V.V. Yanshole, Y.P. Tsentalovich and E. Vauthey
    Journal of Physical Chemistry B, 114 (36) (2010), p11909-11919
    DOI:10.1021/jp104485k | unige:14788 | Abstract | Article HTML | Article PDF
The photophysics and photochemistry of kynurenine (KN) covalently bound to the amino acids lysine, cysteine, and histidine, the antioxidant glutathione, and the protein lysozyme have been studied by optical spectroscopy with femto- and nanosecond time resolution. The fluorescence quantum yield of the adducts of KN to amino acids is approximately 2 times higher than that of the free KN in solution; KN attached to protein exhibits a 7-fold increase in the fluorescence quantum yield. The S1 state dynamics of KN-modified lysozyme reveals a multiphasic decay with a broad dispersion of time constants from 1 ps to 2 ns. An increase of the triplet yield of KN bound to lysozyme is also observed; the triplet state undergoes fast intramolecular decay. The obtained results reveal an increase of the photochemical activity of KN after its covalent attachment to amino acids and proteins, which may contribute to the development of oxidative stress in the human lensessthe main causative factor for the cataract onset.
The properties of xanthurenic acid (XAN) in ground and photoexcited states have been studied using steady-state and time-resolved optical methods as well as quantum chemistry calculations. In neutral aqueous solution and in alcohols, XAN is present in a single tautomeric form (keto form), whereas in aprotic solvents and probably in basic aqueous solutions, more than one tautomeric form is present. UV irradiation of aqueous and alcoholic solutions of XAN results in a very rapid solvent-assisted tautomerization to the enol form, the later undergoes solvent-assisted transformation back to the keto form. The photolysis of XAN in aprotic solvents gives rise to the formation of numerous intermediate forms of XAN in both triplet and ground states. Under intense laser irradiation, XAN undergoes biphotonic ionization, the precursor for ionization being the excited singlet state.
 
The excited-state dynamics of kynurenine (KN) has been examined in various solvents by femtosecond-resolved optical spectroscopy. The lifetime of the S1 state of KN amounts to 30 ps in aqueous solutions, increases by more than 1 order of magnitude in alcohols, and exceeds 1 ns in aprotic solvents such as DMSO and DMF, internal conversion (IC) being shown to be the main deactivation channel. The IC rate constant is pH independent but increases with temperature with an activation energy of about 7 kJ/mol in all solvents studied. The dependence on the solvent proticity together with the observation of a substantial isotope effect indicates that hydrogen bonds are involved in the rapid nonradiative deactivation of KN in water. These results give new insight into the efficiency of KN as a UV filter and its role in cataractogenesis.

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Tuesday March 26 2024